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Abstract

The diffusion process near low order synchro-betatronmasces driven by beam-
beam interactions at a crossing angle is investigated. ddaopic observables such as
beam emittance, lifetime and beam profiles are calculatedsé are followed with de-
tailed studies of microscopic quantities such as the elaoludf the variance at several
initial transverse amplitudes and single particle prolitgtdistribution functions. We
present evidence to show that the observed diffusion is alware and the dynamics
follows a non-Markovian continuous time random walk praced/e derive a modified
master equation to replace the Chapman-Kolmogorov equatiaction-angle space
and a fractional diffusion equation to describe the densiylution for this class of
processes.

1 Introduction

Diffusion of particle beams due to nonlinear fields is oftemajor source of emittance
growth and beam loss in an accelerator. Measurements obliff coefficients have been
reported from several hadron accelerators [1, 2, 3]. THagidn equation was also used to
explain the change in beam lifetime following the failureao$eparator during a Tevatron
store [4]. In collision mode the beam-beam interactionsusreally the dominant nonlin-
earity. Diffusion coefficients in the absence of low ordesaieances have been calculated
for head-on interactions [5] and for long-range interawsif6]. Diffusion due to nonlinear
resonances is more complex and the study of this phenomexsoa long history, see e.g
[7,8,9, 10, 11]. Resonances when modulated, either by dgaeffects such as synchro-
betatron coupling or due to ripple in magnet currents, cagepaacross phase space and
transport particles to large amplitudes [12].

In this article we will study the nature of the diffusion pess due to synchro-betatron
resonances driven by beam-beam interactions with a cgpssigle. This was first inves-
tigated at the DORIS collider [13] and has since been obdgeatether colliders. Our
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aim is to establish the correct statistical mechanical rhibde describes the evolution of
the beam density. We examine the possibility that the ddfuprocess is anomalous with
detailed tracking simulations and derive a master equati@ha related fractional diffu-

sion equation that may describe the transport process. l&ymary version of this study

was reported in [14]. An example of anomalous diffusion obse in particle beams as a
consequence of rf phase modulation was reported in [15].n#adous diffusion processes
have been reported in several areas of physics includirsgradurbulence [16], and in the
motion of laser cooled atoms on a lattice [17].

2 Synchro-betatron resonances due to crossing angles

Synchro-betatron resonances (SBRs) due to beam-bearadtiders at a crossing angle
are convenient to study resonantly driven amplitude grdatiseveral reasons. At large
amplitudes, the non-linear force vanishes, hence pasiaarsions do not go to arbitrarily
large amplitudes which is not the case for resonances dueitguoie nonlinearities. This
removes numerical instabilities and also allows the ebi@m to be probed for the particle
dynamics. Another advantage is that the resonances candiedtn one transverse plane
since these resonances are driven by energy pumped fronorigéudinal plane to the
transverse plane with very little impact on the longitudishegnamics.

When beams collide at an angle, the transverse distancest patrticle from the center
of the opposing bunch depends on the longitudinal positidheparticle. Consequently
synchrotron oscillations of the particle couple to the $rarse beam-beam force leading
to excitation of synchro-betatron resonances. Since thendeeam force goes to zero at
large transverse separations, the effects of these resemane experienced by particles
only within a certain range of transverse amplitudes.

For simplicity, we choose the resonances to be in only omesterse plane, here the
horizontal plane. In order to observe effects over relatighort computation times, we
choose low order resonances. The tunes we choose are gticdali operating colliders
but it is likely that the dynamics near high order resonansesmilar but occurs over a
longer time scale.

Linear motion and the beam-beam interactions can be deschi the equations of
motion resulting from the Hamiltonian

Nip
H = vk + Wy + VsJs + ZUi(X,y,S)5p(§0—€q) (1)

where(vy, vy, Vs) are the tunes, an@dy, Jy, Js) are the actionsJ (x,y,s) is the beam-beam
potential, &, is the periodic delta functiong is the azimuthal coordinate and the sum
extends over the numbagl, of interaction points. Assuming Gaussian distributionalln
three planes, crossing angleg 2y, 2¢) in the horizontal and vertical planes respectively,



the beam-beam potential for colliding proton bunches canriitéen as
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whereN, is the bunch intensity of the opposing buncp,is the classical proton radius,
Yp is the proton energy in units of its rest mass apdoy are the rms beams sizes of the
opposing beam at the interaction point (IP). The potental be expanded as a Fourier
series

UxY:s)= 5> Umgmy,ms Xl (Mt +myy + msis — pg)] 3)
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This potential can excite synchro-betatron resonanceanddy the resonance condition
MyVy + Myvy + MsVs = p where (my, my, ms, p) are integers. It can be shown from the
structure of the Fourier harmonitsy,, m, m, that they are non-zero only when the sum
my -+ m, +ms is even. The Fourier harmonics can also be used to calchiatieibe shifts
with amplitude and the resonance driving terms, as was dofis8]. As one example, we
write down the zero transverse amplitude tune shift for cbbeams. This tune shift now
depends on the longitudinal oscillation amplituedes as

2
Av(a = 0,8y = 0,25) = £ [Ig(1) ~Iy()(1-+ 5 ) @

and a similar expression fdvy. Here& = N.rp/(4rtey) is the usual beam-beam param-
eter, (ax0yx, ayoy) are the transverse amplitudes of the partitjel, are modified Bessel
functions and the other dimensionless parameters are

1 Os . Os .
r=Zal(+h), he=_"sin2p, hy="sin2g
Oy oy

As a consequence, only those zero transverse amplitudelgsvith zero longitudinal
amplitudeas experience the full beam-beam tune shiffParticles with non-zero amplitude
as experience a smaller tune shift.

Since the LHC employs crossing angles in its collision salewe will use the LHC
beam parameters in the simulations reported here. As ink®, the crossing angle is in
the horizontal plane at one IP and in the vertical plane aséwend IP. We consider reso-
nances excited in the horizontal plane only, so they areefdhm myvy + mgvs = p with
my -+ ms even. In our model the only sources of tune spread are the-beam interactions.
These interactions between protons lowers the betatrogstah small amplitudes. We
choose the large amplitude tunes, i.e. the tunes with oeljittlear lattice, to satisfy one of
the SBR resonance conditions. Having chosen a particldaneacen, vy + mugVs = p to
be satisfied by the bare lattice tunes, the tunes inside thehtare determined by the beam-
beam parametef, the synchrotron tunes and the amplitudegay, ay, as) of the particle.
The nominal LHC horizontal tune is 0.31 at collision, so warseed among the following
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Table 1: Table of basic parameters in simulation model. Rasce | is 23vx — 2vs) = 2,
resonance Il is v —2vs = 1.

Beam parameter Value
Energy [TeV] 7.0
Bunch Intensity 1.1x10%
Oy, Oy [um] 16.6, 16.6
Os [cm] 7.5
Rf voltage [MV] 16

Crossing anglesyrad] 300
Beam-beam parameter 0.0034
Resonance I(vy, vy) | 0.3353, 0.32
Resonance llfvx, vy) | 0.2514, 0.32

resonances:\&+ Vs =1, 2(3vy £ 2vs) = 2 as well as Pdvy+vs) =2 and 44 +2vs=1to
find those that cause large growth of the emittance and ban@wven that the betatron
tune spread from head-on beam-beam interactions is al@Qi @nd the small amplitude
synchrotron tune is-0.002, the choices(3vx — 2vs) = 2 and 44— 2vs = 1 had the greatest
impact on the beam. With these choices, low amplitude pestare resonant with the third
and fourth order betatron resonances respectively, anslytiehrotron oscillations modu-
late these resonances leading to large amplitude growthoffter resonances are resonant
at larger amplitudes and consequently have a smaller ingpettte bunch. The bare lattice
(which become the large amplitude) betatron tunes corretipg to these resonances are
shown in Table 1. Some of these parameters may be slighfisrelift from the present
LHC design values, e.g the LHC design value of the crossigiean 285urad.

3 Simulations of beam variables

In this section we will describe multi-particle simulatioesults. These will include the
emittance growth, evolution of beam profiles, amplitudeadlhoat different initial ampli-
tudes, and also the growth of the variance in action at thasaliamplitudes. This will
allow us to probe both the macroscopic and microscopic besmawour.

The simulations were performed with a simple numerical rhadasisting of six di-
mensional linear transport between the two collision miatsinusoidal longitudinal map
through an rf cavity and weak-strong beam-beam interastairthe two IPs. The beam-
beam interactions occur with a horizontal crossing angtnatIP and a vertical crossing
angle at the second IP. The strong beam was assumed to haussigedistribution in all
three planes. Magnetic nonlinearities are not includeth tinkeep the model as simple as
possible and also to avoid particle amplitudes from grovexgonentially fast far from the
beam core. Limiting amplitude growth to finite values allaygsto keep all particles in the
distribution and hence study the growth of the beam tailb @itod statistics.
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Figure 1: (color) Emittance growth vs turns with tunes ondjnechro-betatron resonances.
Left: horizontal emittance growth, Right: vertical emittz growth. The power law fits
and the exponents for the fits are also shown.

3.1 Emittance growth and lifetimes

Emittance growth was calculated by evolving ensembl@spdirticles (5006< N < 20000)
starting with Gaussian distributions in all planes. Typicd0,000 particles sufficed to
obtain results that did not change much with a larger numbpadicles. The calculated
emittance was the rms emittance, eg. = [(x®)(x2) — (x¢)3]%/2. Figure 1 shows the
emittance growth with 20,000 particles on the two resonsind®e find that the growth
follows a simple power law, the fits are also shown in the figuvde observe that the
horizontal emittance growth after 4@urns is more than 2.5 times larger on th@& —
2vs) = 2 resonance than on the4— 2vs = 1 resonance. The vertical emittance growth is
much smaller than the horizontal, about a factor of five senddr the first resonance and
it is practically zero for the second resonance.

By imposing a finite aperture restriction, we can find the pstame needed by particles
to reach this aperture. This has been calculated for sedifielent apertures and for both
resonances. Apertures were placed froontb 100 at intervals of . On the 2Z3vy —
2vs) = 2 resonance, we find that about 7% of particles reazha8handful reach @ and
none reach 16. On the 4 — 2vs = 1 resonance, about 4% of particles reach & few
reach & and none reachd The amplitude distribution of the particles reachirmyéh the
first resonance and of the particles reachiogdah the second resonance are shown in the
top plots of Fig 2. The initial distribution in each case wa&saussian with 40,000 particles.
On the Z3vx—2vs) = 2 resonance, the maximum of the amplitude distribution xxclose
to 1.50 - an amplitude close to the lower edge of the resonance is|ahdwn later in Fig
10. The minimum amplitude that reaches the aperture isd0.28n the 4 —2vs =1
resonance, the corresponding peak in the amplitude disisibis close to 1.8, also at the
lower edge of the resonance islands seen in Fig. 11. The mmiamplitude that reaches
the aperture on this resonance is@.9

The average escape time in the simulation may be interpeasteepresenting the beam
lifetime. The bottom plot in Fig. 2 shows the average escape (calculated with 40,000
particles) as a function of the aperture amplitude for beonances. The average es-
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Figure 2: Top: Distribution of amplitudes reaching an aperf 8 on the Z23vx — 2vs) =
2 resonance (left) and an aperture af 6n the 4 — 2vs = 1 resonance (right). In both
cases, the initial distribution was a Gaussian with 40,G0€figdes. Bottom (color): Average
escape time for the two resonances at different apertures.

cape time with 20,000 particles yielded similar values shgwhat these numbers have
converged to stable values. The average escape time iasrégsan order of magni-
tude or more for each increase in aperture by The average escape time at 8n the
2(3vx — 2vs) = 2 resonance is about the same asa@tod the 4y — 2vs = 1 resonance.
At a fixed aperture, the differences in escape times betweetwo resonances increases
by about two orders of magnitude at 5 and @&nd three orders of magnitude ai.7One
would expect this trend of increasing lifetimes to contimdth higher order resonances.

3.2 Beam profiles

The beam profiles were found for the same distributions asdn@nces. The left plot
in Fig 3 shows a mountain range view of the horizontal beanfilpso(i.e. distribution
function of the horizontal position), initially and thenather intervals up to 10turns with
tunes on the resonancé3®y — 2vs) = 2. After the initial time, the subsequent horizontal
profiles develop long non-Gaussian tails which extend odt&c compared to the initial
Gaussian distribution which was limited #68.50. The vertical beam profiles (not shown
here) however stayed Gaussian and close to the initiailalision. The right plot in this
figure shows the horizontal profiles but with tunes on resoedn, — 2vs = 1. We observe
that in this case as well that the tails are non-Gaussian sede out to about-60, not
quite as far as on the first resonance. Again there is velg dittange in the vertical profile.
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Figure 3: (color) Mountain range view of the horizontal beanofile initially and at subse-
quent times. Particles were on the resonan@2- 2vs) = 2 (left) and on the resonance
4vy — 2vs = 1 (right).

We observe that the beam tails do not appear to change verly after the first 100,000
turns or so. It is most likely that the regions of enhanceéudion are depleted within
these turns. The patrticles in the vicinity of the resonastands are transported to larger
amplitudes quickly and are detuned from the resonance. mmitades to which they
move have much smaller diffusion, so the beam tails do nohgdanuch. As we will
see in the next subsection, the evolution in the beam comessgmwth even after several
hundred thousand turns. However these particles do noaieitw the tails during the time
duration followed. Thus we continue to observe emittancavt.

In order to find distributions that can best fit the non-Gaassails, we first look to
the Central Limit Theorem (CLT) which explains the ubiqufithe Gaussian distribution.
This powerful theorem states that the distribution of a sfia equence of random, iden-
tically distributed and independent variable with finiteaneand second moment tends to
a Gaussian distribution in the limit that the number in thgussce approaches infinity.
Generalizing the CLT by dropping the requirement of a fingeasyd moment leads to the
family of Levy stable distributions [20]. For applicatiomsbeam dynamics, these distri-
butions will still have a finite second moment because thegat@xtend to infinity but are
truncated at the beam pipe or the closest physical apertures

Levy stable distribution functions are defined by an invdfserier transform of a
stretched exponentially decaying function in Fourier gpac

La(z):%T/mexp[—iﬂ(—\k\“]dk, O<a<? (5)

There is no known closed form expression for arbitrary valfer. Special cases include:
the Lorentz distributiori,(z) while L,(z) is the Gaussian distribution. There are more
general asymmetric versions of the Levy stable distrilmuvith additional parameters but
we shall not need them here. Some basic properties of thesgdos are [21]

e These functions are normalized®, dzL,(z) = 1

e They are even functionsl; (—2) = L4(2)
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Figure 4: (color) The final horizontal profile and a fit (bluejiwa Levy stable distribution
L. Left: Resonance(3vx — 2vs) = 2 anda = 0.95. Right: Resonancev4— 2vs = 1 and
a=13.

o Atz=0,L4(0) = 1T (), which increases rapidly whem— 0.
e Atlarge values of, the distributions decay as

: 1.1 Mil+a)
ZImrgoLo,(z) ~ I—Tsm(éna)w

We find that the non-Gaussian horizontal profiles can be fithlege Levy stable dis-
tributionsL,. The left plot in Fig. 4 shows the fit of the final horizontal pi® for the
resonance @Bvy — 2Vs) = 2 with a Levy stable distribution with parameter= 0.95. This
profile is narrower than a Lorentzian and decays at lamgx| 1. The right plot in this
figure shows the final distribution on the resonaneg-42vs = 1 can also be fit by a Levy
stable distribution with a larger central width and cormsging toa = 1.3. This profile is
wider than a Lorentzian and decays at laxges|x|~>3. The Levy stable distributions were
generated with a Mathematica package [19].

It is known [22] that the Levy stable distributions serve ag&h’s functions to frac-
tional diffusion equations for a densipy(x,t) of the type

d a
Ep(XJ) =X —ooDx p(X,t) (6)

wherey is a constant diffusion coefficient ang,DY is the Riemann-Liouville fractional
space derivative of order given by,

1 9% ¢ p(X)
an_ - L S
~=DxP = [(2—a)dx? /oo (x—x’)“—ldxl

The solution of the fractional diffusion equation above is

pixt) = [ La(@polx— (xt)* 2z @®)

(7)

wherep,(X) is the initial density. Levy stable distributions have ai&®n shown to be so-
lutions of other fractional diffusion equations [23]. Thes no reason to believe that either
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Equation (6) or of the type in reference [23] are appropriate@ur problem. However the
fact that the long time beam profiles are described by thewgg distributions is our first

indication that the amplitude growth process may be desdrily an appropriate fractional
diffusion equation rather than the regular diffusion equrat In Appendix A we derive a

different fractional diffusion equation that may describe dynamics observed here.

3.3 Growth at individual amplitudes

We now take a closer look inside the beam distribution tordatee how the amplitude

growth changes with amplitude. Instead of a Gaussian bligtaon in phase space, we
consider delta function distributions in action. We sekecliscrete number of horizontal
actions and at each action we place 4000 patrticles unifodislyibuted in angle. The

vertical amplitude was kept constant at @.for all particles. The initial distribution in

transverse action angle space can be written as

P(3 803, 8) = (3 — Jp ) P(BIP(8) T 5(3—J) ©)

whereJ, ; is the action at an amplitude of @1 P(6x) is a uniform distribution in the
horizontal angles etc. The initial longitudinal variablesre chosen to be the same for all
particles:z= 10s, dp/p = 10y in these simulations. We let these distributions evolve and
record the final distribution in amplitude after®lurns. The left plot in Fig 5 shows the
initial (red) and final (blue) distributions for resonanc&\le observe that particles at @.5
stay close to their initial amplitude. Atd, many particles have moved to larger amplitudes
but a sizable fraction stay in their original neighbourhodthis shows a large variation

in final amplitude depending on their initial angle or sawgit to their initial conditions.

It suggests that motion in the neighbourhood of dould correspond to bounded chaos.
At amplitudes of 1.6 and higher, the vast majority of particles have migratedatgdr
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zero initially but the zero is suppressed here.

amplitudes up to 8 and depleted the initially populated regions. There is atrocal
maxima in the final distributions at 70. The right plot in Fig. 5 shows the corresponding
results for resonance Il. The results are qualitativelyllsmnwith some differences. The
initial amplitude with large variation in final amplitude @oser to 2 and the largest
amplitude reached is about’7 On this resonance there remain local spikes at 2.5 and 3
showing that diffusion at these amplitudes is weaker thaherfirst resonance.

3.4 Variance of the action and diffusion type

We now examine the diffusion from individual amplitudesrégular diffusion the variance
of the diffusing quantity, here the action, grows linearlithstime which allows one to
define time independent diffusion coefficiem$]) = ((AJ)?)/At. We check the validity
of this assumption for the beam-beam driven SBRs. usingahesnitial distributions as
used in Fig 5. Variances are calculated over particles asdnee initial action. Figure 6
shows the growth in the variance of the horizontal actioreaéesl initial actions for both
resonances. The vertical amplitude was constaypta0.10. Initially the variance is zero
at all actions but then grows at different rates dependintheraction. The growth in the
variance is not linear at any action. In most cases there ggsnitial transient growth
which is followed by a slower long term growth. This long tegmowth can be modeled
(again in most cases) by a power law behavior of the form

((8392) ~ P, ((B3)%) ~Cyt> (10)

where the coefficientéCy,Cy) and the powergpy, py) depend on the initial action. Ex-
ponents less than 1 indicate sub-diffusive behavior whifgoaents greater than 1 imply
super-diffusive motion Figure 6 also shows the fits with thasver law. Growth of the
variance in the vertical action can also be fit by a single pdexe with small values of
(Cy, py) showing that there is no appreciable diffusion in that pla@n the resonance
2(3vx—2vs) = 2, there is significant growth in the action at amplitudes ahd 2.5 com-
pared to neighboring actions both lower and higher. Thepmeto the single power law
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fit occurs atx = 10 where the variance stays nearly constant after the infaakient and
then after about 400,000 turns grows by an order of magnibudethe next 600,000 turns
but with oscillations in the variance. These oscillatiosswr because of the large sensi-
tivity to the initial angle at this amplitude. The oscillatis decrease significantly when
the number of particles at the same initial action is inaedalsom 4000 to 20000 parti-
cles, which results in a more complete sampling of the ingigle. Simulations show
that this greater sensitivity to the initial angle is alsegent at amplitudes in the range
1.00 < x<1.30 with y=0.10. The fits to a power law in this zone are applied after the
variance starts to grow rapidly but with 20000 particles.e Hverage action with initial
x| = 1.00 grows about 10% after £@urns while the average action with initial = 1.50
grows by about a factor of two over this time. So the narrowezaround|x| = 1.00
corresponds to a zone of bounded chaos.

At the resonance W — 2vs = 1, the growth in variance is largest in the range
2.5— 30 and drops for both smaller and larger initial actions. Thigdaoscillations in the
variance occur in a range arourd- 2.00 and again these oscillations are reduced when
the number of particles is increased from 4000 to 20,000. tiisrresonance, the zone
around|x| = 2.00 is a zone of bounded chaos. Similar behaviour is seen at wdhezs of
y but the width of the zone of bounded chaos changes.

The exponents in the power laws were calculated for sevetaks of the horizontal
amplitude and for different vertical initial amplitudesit # shows the exponents for both
resonances. On the resonan¢8\g — 2vs) = 2 there is a spike in the exponent to values
well above 1 in the regions of bounded chaosyfer 0.1,0.50 suggesting super-diffusive
behavior. Above the zone of bounded chaos, the exponestvi@ll below 1 suggesting
sub-diffusive behavior. Ay = 1o the exponent stays well below 1 for alshowing that
zones of bounded chaos have disappeared. Onuhe 2vs = 1 resonance, the exponent
rises above lonly in a narrow zone around 20 aty = 0.10. Aty = 0.50 the exponents
stay well below 1 at alk with a small spike ak = 20. The motion is sub-diffusive at all
x values studied wheyp= 10. Since the super-diffusive regions are narrow, it is pdesib
that they may appear foy| > 1o when the motion is studied with a finer resolution or even
when the longitudinal variables are changed. We remarkwidtave observed here three
different signatures of bounded chaos: large variationnal amplitude when starting
from the same initial amplitude (seen in Fig 5), large oatiins in the action variance
over time (seen in Fig. 6 and a spike in the power law for thevgref the variance (seen
in Fig. 7). These signatures apply to an ensemble of pastati¢he same amplitude but
different initial angle as opposed to the Lyapunov expometerion which is applied to a
pair of particles that are initially infinitesimally close.

The picture that emerges is that near synchro-betatromaeses, phase space is di-
vided into several zones. At small amplitudes there is nfusiibn. At larger amplitudes
there is a zone of bounded chaos with super-diffusive mofidre next zone outward in
phase space is wider with sub-diffusive motion. Finally\arelarger amplitudes, the mo-
tion becomes linear again and consequently there is ncsthffu Fig. 8 shows a qualitative
sketch of these different zones. The width of the supeusife zone with bounded chaos
depends on the resonance, on the amplitude of the orthogganalerse amplitude and on
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Figure 7: (color) Exponery of time in the power law fits of the horizontal action variance
vs the initial horizontal amplitude for different initiablues of the vertical amplitude. The
left figure corresponds to the resonancé3vg— 2vs) = 2 and the right to the resonance
4vy — 2vs = 1. The exponent spikes above 1 in a very narrow range of haatampli-
tudes. Exponent values below 1 indicate sub-diffusive Wiehavhile those above indicate
super-diffusive behaviour.

the values of the longitudinal variables.

The fact that the sub-diffusive regions seem to be domimatitis perturbed Hamilto-
nian system should not be unexpected due to the existenggefiolic fixed points and
the existence of perturbed KAM tori. These fixed points amdéad to orbits which stay in
their vicinity for long time periods and consequently tovséw growth. Similar phenomena
have been reported for the standard map by Balescu [24].

4 Statistics of single particle behavior

We saw in the previous section that in most regions of phaaeeshe variance grows
slower than linearly with time. If we define an instantaneousunning’ diffusion coef-
ficient [24] asD, = (1/2)8(AJ2)/at, then this coefficient would be time dependent and
would vanish in the very long time limit. Near both resonaee did not observe any
zone of regular diffusion with constant diffusion coefficie. We also saw that the beam
profile was given by a Levy stable distribution which is knaterbe the solution of a frac-
tional diffusion equation. These suggest that the dynamées these resonances cannot
be described by the regular diffusion equation but insteatithe diffusion is anomalous
which needs a different diffusion equation. In order to thg possibility in more detail,
we will examine the validity of the assumptions behind thgutar diffusion equation.

4.1 Continuous Time Random Walks
The regular diffusion equation arises after assuming treaparticle dynamics can be mod-

eled as a classical random walk following a Markov procesiis Tmplies that particle
jumps occur at regular time intervals and there is a well @éeftime scale such that events

12
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Figure 8: (color) Qualitative sketch of phase space dividemzones of no diffusion, super-
diffusion and sub-diffusion when the dynamics is domindtgda beam-beam synchro-
betatron resonance.

separated in time by longer than this time scale are unetect! It then follows that the
particle density is governed by the well known Chapman-Kmorov master equation.
From this master equation and a few more assumptions (e.theosmallness of the dis-
placements etc.) the regular diffusion equation followse &ppendix A for a sketch of
this derivation.

A well known alternative to the standard random walk pictigrthe Continuous Time
Random Walk (CTRW) model introduced by Montroll and Weiss] [ consider processes
where both the times at which jumps occur as well as the sizégequmps in space are
random functions. A review of CTRW and connections to fiawail diffusion equations
may be found in [26].

A general dynamical process may not have a characterigteedcale. In those cases a
Markov description may not be applicable. The CTRW modebuitices the concepts of a
probability distributionw for the waiting times before a jump occurs and a probabilisy d
tribution W for the size of a jump In beam dynamics there is no diffusioemvthe motion
is linear and the usual Courant-Snyder actions are corde@ansequently it makes sense
to define the jumps in action space when the motion is nonliaed diffusive. Hence we
definew(t,J)At to be the probability that a particle waits for a time betweandt + At at
actionJ before making a jump. and defiigAJ; J,t)AJ to be the probability of making a
jump byAJ at the actiond at time t. These distributions are normalized, i.e.

/W(t,J)dt _1- /W(J’;J,t)dJ’ (11)

The concept of a waiting time endows the system with memdng. CTRW model reduces
to the classical random walk model on which the regular diio equation is based, when
the waiting time follows an exponential behavior in timé/T with a characteristic time
scaler.

These waiting time and jump size distributions can be useddny cases to determine

13
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Figure 9: Time series of the horizontal amplitude wita- 1.50,y = 1.50. Left plot: We
see the first large jump in the amplitude frenll.50 to ~ 6.50 occurs after 140,000 turns.
Middle plot: This zoomed in plot shows sequences of jumpsfsmall to large amplitudes
and back interspersed with intermittent periods of smapl#tode changes. Right: The last
200,000 turns during an evolution ovexa 0P turns. Here we see excursions between 1 to
80.

the evolution followed by the density distributign(J,t). The canonical CTRW model

assumes a power law waiting time distribution, a Gaussiamhi® jump size distribution

and a constant diffusion coefficient. These lead to a fraatidiffusion equation for the

density [26]. In our case the dynamics near resonancesfisienfly complicated that we

need to establish the evolution equation for the densityffiost principles. We therefore

need to determine the forms of the jump size distributionthedvaiting time distributions

from the dynamics. Simulations discussed in the rest ofgbidion are used to extract
these distributions.

A check of the whether the CTRW model may be applicable hemeébeadone by ex-
amining the time series of single particles. Fig 9 shows oaewple of a time series of the
amplitude/2BJx for a single particle on the resonancg8@, = 2vs) = 2. The left plot
shows that a particle may perform small amplitude quasedér oscillations for a while
before a major qualitative change occurs. The middle andigfm plots show that step
sizes can be large (sever), of varying amplitude, and there are intermittent seqasnc
of varying duration where there are smaller steps. The tispeddent behaviour of this
sequence and the non-locality of the changes establishhisats a process with a distri-
bution of waiting times and a distribution of action stepesizthe key ingredients of the
CTRW model.

4.2 Jump size distributions

We now calculate the jump size distributions by followingiagée particle for 16 turns

and find the changesx, AJy in position and action per turn. Fig. 10 shows the phase space
and jump distributions of\x, AJx on the resonance(2vy — 2vs) = 2 with initial values of
x=(0.2,2,8)0. At the smallest initial positiox, = 0.20, the phase space is a distorted
ellipse with no trace of the resonance island; motion herpiasi-linear. The plot for the
distribution function ofAx also has the distribution function for a periodic functitrown

in dotted lines. When the argument of a periodic functioe ine or cosine is sampled
from a random distribution, the distribution function fdret periodic functionf has the

14
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Figure 10: Phase space (left), jump size distribution@middle) and jump size distribution

in actionJy (right) on the resonancg 2vx — 2vs) = 2. The initial value ok changes going
from top to bottom ag = (0.2,2.0,8.0)c. The initial value ofy = 0.10 is the same in all
these plots. The distribution ty is plotted on a semi-log scale and the abscissa is in units
of AJy/Js Wherel, is the action at Dy.

form
1

V1— 12

The distribution function has local maxima wherever thection itself becomes stationary,
so that many more points are sampled from the neighbourhbthese stationary points.
Since the motion at small and large amplitudes is quasbgerin our model, it is to be
expected that the distribution ikx is close to that of a periodic function. The distribution
function for AJy is plotted on a semi-log scale and shown as discrete pomtgyréater
clarity. At x, = 0.20, the distribution forAJy lies on a single curve but not given by any
simple expression. As the particle’s initial position ieases to 27, the nonlinearity of
the beam-beam force manifests and we see resonance istaptiase space and large
excursions. The distribution function féix undergoes a qualitative change to resembling
a parabolic curve but with a dip in the center and with peakseclto the center. The
distribution function forAJx now falls on two separate curves. Similar distributions for
Ax, AJy are seen for initial particle amplitudes in the rangsol< |x,| < 6.50. At X, = 80,

the phase space returns to a distorted ellipse with corabtlesmear, and the distribution
functions also resemble those seerg@at 0.20.

p(f) ~ f<1 (12)

Fig. 11 shows similar plots on the resonaneg 4 2vs = 1 with initial values ofx =
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Figure 11: Similar plots as in Fig 10 but on the resonange-42vs = 1. From top to
bottom, the different initial values of= (0.5,5,8)c. The initial value ofy = 0.10 is the
same in all cases.

(0.5,3.5,8)0. Again, we see a qualitative change in the distribution fioms when the
motion is strongly nonlinear in the presence of the resomasiands. The shapes of the
distributions inAx are similar to those seen for the previous resonance anddtnidodtion

of AJy also lies on separate curves at intermediate amplitudesseT$uggest that there is a
universal character to the jump distributions which misrtire behavior in phase space.

4.3 Waiting time distributions

The waiting time distribution is the important distributithat determines the nature of the
diffusion process. As remarked earlier, a waiting timertstion that follows an exponen-
tial law reduces to a Markov process, otherwise the prosassri-Markovian. The waiting
time for each initial amplitude is found here by tracking atioée at that amplitude for 10
turns. The phase space region in action angle coordinaaéssthisited by the particle is
divided into different zones and the time that the partitéy/s in the zone before leaving
is one instance of the waiting time. The choice of the widtkhefzone is somewhat arbi-
trary since there is no dynamics dependent action scaldwig@pplicable to all of phase
space. For example, the resonance width is not relevantat esnmarge amplitudes and if
there were multiple resonances, there would be multiplehsidWe therefore calculated
the waiting time distribution twice, once with a chosen Wwiduch that there was enough
statistics in each zone and the second time with twice théhwich most cases we found
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Figure 12: (color) Waiting time distribution (on a log-logade) for the 23vy — 2vg) = 2
resonance (left) andw} — 2vs = 1 resonance (right). The distributions are calculated at
amplitudes where there is significant diffusion of parsde larger amplitudes.

that the parameters of the distribution change by less tQ&é Wve take this to be a sign of
convergence of the distribution. We find that the exponéfurection is not a good fit to the
distribution for either resonance. The results for a fit t@agr law distribution are shown
in Figure 12. The distributions are plotted on a log-log sdal several initial amplitudes
where there is significant amplitude growth. On ti{8\8 — 2vs) = 2 resonance, most of
the points (with the exception of the single occurrence s/esith long waiting times) lie
on straight lines showing that a power law is a reasonabl€&Hi. power law exponents for
the different amplitudes are close. For the amplitudes shaovhis figure, the waiting law
distributions are
w(t)~t79 24<a<27 (13)

On the 4, — 2v5 = 1 resonance, the waiting time distribution can also be fit ippaer
law distribution but the range of variation in the exponeris larger: 14 < a < 2.7. The
greater variability in the exponent is expected to have gmachof the dependence of the
diffusion rate at different amplitudes on this resonance.

5 Fractional diffusion equation

Since the waiting time distribution suggests that the frarisnear resonances is non-
Markovian, we need to establish an alternative to the regliffusion equation. For a
Markov process, the regular diffusion equation is obtaiineash the Chapman-Kolmogorov
master equation, a derivation is sketched in Appendix A. ppéndix A we also derive
a different master equation using general jump size andngaiime distributions for a
CTRW process in action space following a method outlineif].[ The master equation
for the density in action angle space that we obtain is
Jd 1 1
Ep(J,9):?//dAJdAGLP(J—AJ,G—AG;AJ,AB)Ltp(J—AJ,G—Ae,t)—?Ltp(J,B,t)
(14)
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whereL; is an integral operator given by

1

;LtP(J,G;t):g—l si(s, J, 0)

mﬁ(Jaeas) (15)

Here #~1is an inverse Laplace transformjs a time parameter in the waiting time dis-
tributionw(t,J), W(s;J), p(s;J) are the Laplace transforms of the waiting time distribution
and the density respectively. In the Appendix we then shat ¢éixpanding this master
equation in a Taylor series in the same manner as is doneddCliapman-Kolmogorov
equation, the following fractional diffusion equation ibtained for a power law waiting
time distributionw(t,J) ~ t=2()

op 0 0 1 o (., p,t)
at ZZﬂ[Dk'ﬁ]r(l—a(J)) [E/o at (t—t’)a(J)] (16)

Here the exponent depends on the actiahwhich will be true in general an®,, are
action dependent diffusion coefficients, defined in the adpe It remains to be verified
that this fractional diffusion equation describes the dyitd near resonances, as seen in
the particle tracking simulations. However, this diffusiequation has been derived under
general considerations of a CTRW process which the dynangas the SBR resonance
appears to follow. Given the large variations in the diffusicoefficients, the solution
of this diffusion equation will likely require a special pase numerical algorithm. The
density can then be used to calculate the beam lifetime amdugamoments such as the
emittance .

6 Discussion

We have studied the detailed transport process near two fder dnorizontal synchro-
betatron resonances driven by beam-beam interactionsrassirg angle. We found that
the horizontal beam profiles develop long beam tails. Thézbotal beam distribution
evolves from an initially Gaussian distribution to a Levglde distributions on both reso-
nances. The Levy stable distributions are solutions of Erfrpctional diffusion equations
which describe some anomalous diffusion processes. THetmroof the variance in ac-
tion at several initial values characterizes the naturenefdiffusion in phase space. At
small amplitudes there is no diffusion, then there is a mamegion where the motion is
super-diffusive (the variance grows faster than linearlghwime), followed by a broad
region where the motion is sub-diffusive (the variance gr@hower than linearly with
time) and finally no diffusion at large amplitudes. The widtid the location of the super-
diffusive region depends on the resonance, the width ionamfor the weaker resonance.
This super-diffusive region is also marked by signaturebafnded chaos and particles
do not experience large amplitude growth. For both resagmbis region is located at
the lower edge of the resonance islands. The broad sulsiddfuegion abuts the super-
diffusive region and continues until about 5-@8epending on the resonance. Here particles
do migrate to larger amplitudes. We do not observe regufausion anywhere in phase
space on either resonance with the particle distributionsised.
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The jump size distribution and the waiting time distributi&ey ingredients of a con-
tinuous time random walk process, were found by analysighgles particle tracking data.
The jump size distributions for both resonances were simitathe linear regions of phase
space, the distributions ix are close to the arcsine distribution while in the nonlirrear
gions they have a more complex shape. The similarity of tklesteibutions for the two
resonances suggests that these may be universal feataresuch resonances. When the
waiting time distributions follows an exponential law, tstechastic process is Markovian.
We find that the waiting time distribution follows instead @ayer law, again for both res-
onances. Since the process is non-Markovian, the regufaisidin equation cannot be
used to describe the evolution of the density. For a genefr&W process, we derived a
master equation in action-angle space which is applicagbedcesses with arbitrary jump
size and waiting time distributions. A fractional diffusi@quation was derived from this
master equation. Numerical solutions of this diffusionagan will allow computations of
beam observables such as lifetimes and emittance growth.

This model can be tested against beam observations wheradogsdiffusion is sus-
pected. Comparison of beam profiles with Levy stable digtrims would be a first check.
Another indicator would be if the emittance of pencil beam®sagnonlinearly with time.
This could then be followed by measurements of diffusionffeadents at different am-
plitudes, using them in the fractional diffusion equatiordaomparing the numerically
calculated emittance growth and beam lifetime with the mesbvalues.

In this article we considered low order synchro-betatraonances so as to observe
effects on a short time scale. Based on comparisons of thesseamances studied here, we
expect that the physics at high order resonances (and hesreeapplicable to operational
accelerators) will be similar but on longer time scales. Whaultiple such resonances
are present simultaneously, the diffusion is likely to beraalous but the phase space
dynamics will be more complicated. It is possible that thggits near space charge driven
resonances may be similar to that obtained here but thaimentabe investigated.
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A Appendix: Regular and fractional diffusion equations

We briefly summarize the derivation of the diffusion equatio action-angle space. We
assume a Hamiltonian descriptiét(J, ) which has been perturbed from an integrable
HamiltonianH,(J). Let W(J,0;AJ,A8 be the transition probability for the action-angle
variables to change froifd, 8) to (J+AJ, 8 +A8) in time At. The first major assumption

is that the dynamics is Markovian. For a Markov process, tréigle density distribution

at timet + At only depends on its instantaneous statesaid is independent of its previous
history providedAt is longer than a characteristic time Under this assumption, the den-
sity p(J, 6,t) at timet 4+ At can be found by summing over all possible transitions in time
At. This results in the Chapman-Kolmogorov equation for thesdg

p(J,e,t+At)://p(J—AJ,e—Ae,t)w(J—AJ,e—Ae;AJ,Ae)d(AJ)d(Ae) (A1)

Here W is the transition probability of jump&AJ,AB). Further assumptions need to be
made including i)the angles evolve on a faster time scale tihe actions and their corre-
lation decays rapidly, ii) the density in the long time lingtindependent of the angle iii)
the transition probability can be factorized in the fo#(J, 8;AJ,A8) = W;(J;Ad) (A6 —
BAt) iv) the changes in action and andld, A8 are small during a time intervait. Ex-
panding the LHS and the RHS of Equation (A.1), keeping up tmseé order terms and
then taking the limitAt — O, we obtain the Fokker-Planck equation

% _ 0 Dl D (A2)
ot~ P ZZ‘NHM 4P '
where the driftA and diffusion coefficient® are defined as
B (AJ) B . 1(AJA)) B / _
AQJ) = A Dy (9) _AJH“OITA]tHOET’ (M) = [ AIW(J;A0)dd

(A.3)
HereAt is understood as a time shorter than a time scale over wheothethsity distribution
evolves but longer than the time over which angle corretatidecay.

For Hamiltonian systems, there is a relation between thiedarefficient and the diffu-
sion coefficients [28, 29]

1 0
==Y —D (A.4)
Ak 2 Z dJI ki
then the Fokker-Planck equation simplifies to the diffusgnation
op 7] ap

The assumptions of Markovian behavior and the smallnedseoéthanges in action-angle
variables are crucial for the validity of this regular dgfan equation. If these assumptions
are invalid, then this diffusion equation may not be thetrigbdel for the density evolution.
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We now consider a more general master equation for a CTRWepsda action angle
space with arbitrary jump size and waiting time distribnio We use a method outlined
in [27]. It uses two basic balance conditions: the first stét@t a change of density arises
from the difference in the incoming flux*(J, 8,t) and the outgoing flux —(J, 6,t).

d

Ep(‘Le) :r+<\],9,t)—r_(J,9,t) (A6)
The second balance condition states that the influx is coetpokthe outflux of particles
from all other phase space locations to that location

r+(J,9,t)://dAJ dA6 W(I—AJ,0—AB;AJAB)~(J—AJ,6—AB,t) (A7)

The outflux at(J, 6,t) has contributions from particles that were present imtiaut left
after waiting for timet and those that arrived later before leaving

1
r—<J,e,t):w(t;J,@)p(J,e,0)+/ wt—t:3,0rJ,0.)dt!  (A8)
0

Substituting Eq. (A.8) in Eq. (A.6) and taking the Laplacansform, we obtain for the

outflux ¥(s..0) .
SW(s;J,0) . 1 .
mp(leﬁ)} = TLtP(Jae,t) (A.9)

Herew(s;J,0) andp(J, 8,s) are the Laplace transforms fspace,t is a relevant time
parameter in the waiting time distribution. aifi—! is the inverse Laplace transform. The
last equality in this equation defines the integral operatoSubstituting this back in Eq.
(A.6) and using Eq.(A.7) we obtain

r=(J,6,t) zz—l{

950, 6):% //dAJdAGW(J—AJ, 0—00:AJ,AB)L p(I—AJ, 0—16,1) —:—TLLtp(J, 0.1)

ot
(A.10)
This is the modified master equation for the density.

Now we derive the modified diffusion equation from this mastguation. We expand
the RHS of Eq.(A.10) in a Taylor series and keep up to secoderderms. As before we
define the coefficients

A@Jd) = lim =L Dkl(J):AIBTO%@JkiTAM (A.11)

We assume that the same relation as in Eq. (A.4) betweenithardt diffusion coefficients
holds. Then we have as the modified diffusion equation

op 1 o 0
T Z Z 53, Pu g3 1P (A12)

In cases wherél/1)L;p = p, this is the regular diffusion equation.
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Consider now two examples of a waiting time distributiorstfain exponential waiting
time

1 R 1, 1
wit) = Fexpi—]. = W(s) = £ (57 7) (A13)
The integral operator simplifies to
1 1 SW(S) .
ke =2 ()p( s)|=p(J,t) (A.14)

i.e. the modified diffusion equation reduces to the reguffusion equation.

Now consider a power law waiting time

w(t;) = (1) 0 (A15)

Here we let the exponermt be action dependent. In the long time limit> c or equiva-
lently s— O,

Lp=T(1-a(2) 2 FVp(3,9) = OFp(3.1 (A.16)

Herel is the Gamma function aqut"(J) is a Riemann-Liouville fractional derivative in
time defined below. The diffusion equation foiis
ap 7 3

Ja [t ., b
_ZZ% oy la( el Y ] B

This is a non-local in time (due to the waiting time distrioai integro-differential diffu-
sion equation for the density.
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